regress [ parameter=value ... ] [ inputfile ... ] correlate [ parameter=value ... ] [ inputfile ... ]
Parameters for regress are: indep_var, depend_vars, add_const, printout.
Parameters for correlate are: include_vars, printout.
Given a list of user specified variables, correlate computes normalized correlation coeffients for each possible pairing. The formula for the correlation between variables var[j] and var[k] is
SUMi ((var[j][i] - mean of var[j]) * (var[k][i] - mean of var[k])) ------------------------------------------------------------ std_deviation of var[j] * std_deviation of var[k]
The normalized correlation of any variable with itself is 1.
Given an independent variable, and a list of dependent variables, regress computes linear regression coefficients for each of the dependent variables, and optionally, a constant term:
indep_var = coef[0] + SUMj ( coef[j]*depend_var[j] )
For each coefficient, regress computes an estimate of its variance. regress also computes the variance of the solution, e.g., sum of squared errors in the above equation, divided by the size of the independent variable.
Both correlate and regress can repeat this process for several input datasets. All variables specified for correlate or regress must be parallel, e.g., have the same dimensions.
The following example show regress and correlate used against a simple test dataset containing three single precision float point variables, x, y, z such that z = 10 + x + y.
%
% printvar test
include_vars : char(255) ? []
line_per_elem : char( 3) ? [yes]
list_dims : char( 3) ? [yes]
printout : char( 3) ? [no]
Printvar test Page 1
x y z
1 10 1 21
2 10 2 22
3 10 3 23
4 10 4 24
5 10 5 25
6 20 1 31
7 20 2 32
8 20 3 33
9 20 4 34
10 20 5 35
%
% regress test
indep_var : char(255) ? z
depend_vars : char(255) ? x y
add_const : char( 3) ? [yes]
printout : char( 3) ? [no]
Regression Page 1
Count Variable Coefficient Variance
10 z 4.54747e-14 test
10 x 1 0.004
10 y 1 0.05
10 1 10 1.45
%
% correlate test
include_vars : char(255) ? []
printout : char( 3) ? [no]
Correlation Page 1
Count Variable 1 Variable 2 Correlation
10 x y 0 test
10 x z 0.96225
10 y z 0.272166
%
Last Update: $Date: 1998/05/29 20:19:48 $